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Overview

The goal of this talk is to explain an unlikely intersection of three subjects:

1. Computer vision (mainly, minimal problems)
2. Galois theory for polynomial systems
3. Numerical continuation methods methods for solving these systems.
I'll also spend a large amount of time motivating the study of minimal problems.

For further reading and references: see the short article accompanying this tutorial
(https://arxiv.org/abs/2507.10407, to appear in ISSAC 2025 Proceedings.)


arXiv:2507.10407
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Classical computer vision begins with the pinhole camera in standard
coordinates, projecting a 3D point onto the plane z = 1.

Not linear, but projective linear. Represented by a 3 x 4 camera matrix
x/z X 1 000
yv/iz|~|y]l=10 1 0 0

1 z 0 010

= N < X

(Recall: n-dimensional projective space over the real numbers,
P" = (R™\ {0}) /(x ~ Ax VA eR\{0}).

Points in R” have homogeneous coordinates in P".
If x,y € R™*! represent the same point in P", we write x ~ y.)



Anatomy of the pinhole camera

In general, we need coordinate systems for the camera (A € P (Hom(R* [R?)) = P,
the world points (q € P*), and the image points (p € P?).

A generic linear projection A : P2 --» P> has 11 degrees of freedom.
Their physical meaning can be seen from RQ decomposition,

(05% S X0
A~10 o, ol -(R|t),
0 0 1

where R € SO3 is a 3 x 3 rotation matrix, t a translation vector.

The camera matrix (R | t) is said to be calibrated. It describes the position and
orientation of the camera in space.

Intrinsic parameters o, s, xo, vy, yo determine the camera’s pixel width, image center,
aspect ratio, skew, and focal length. They are often (not always!) known in practice.



Classical camera geometry problems
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Perspective 3-Point Problem (aka P3P, Calibrated Resectioning, ...)

Given: 3D points q1, >, q3 € P2 and matching 2D points p1, po, p3 € P?
Unknown: calibrated camera (R t) such that p; ~ (R t)q; for i = 1,2, 3.



Perspective 3-Point Problem (aka P3P, Calibrated Resectioning, ...)

Given: 3D points q1, >, q3 € P2 and matching 2D points p1, po, p3 € P?
Unknown: calibrated camera (R t) such that p; ~ (R t)q; for i = 1,2, 3.

Choose projective representatives such that q; = (q,-l g2 Qi3 1) T, and p;Tp; = 1.
Define (unknown) scalar depths A1, A2, A3 such that \;p; = (R t)q;.

e 2pi=(R )@y

Grunert (1847) derived 3 polynomial equations in 3 unknowns: for 1 </ < j <3,
A2+ A2 =2 (piTPj> AiAj = (ai —a;) " (ai — ).

For generic data (q1,d2,d3, p1, P2, P3), this system has 8 (complex-valued) solutions.



Universal problem of algebraic vision: Let 7 : X' --+ R™ be a map of algebraic
varieties, where X' is a space of unknown states and w(X) C R is a space of idealized
data. Given a measurement y = y of “true” data y = m(x), recover x € X with x ~ x.
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Universal problem of algebraic vision: Let 7 : X' --+ R™ be a map of algebraic
varieties, where X' is a space of unknown states and w(X) C R is a space of idealized
data. Given a measurement y = y of “true” data y = m(x), recover x € X with x ~ x.

Example 1: Perspective n-point (PnP / calibrated resectioning)

TPhP - SE3 — <R2>n
(RIt) = (M((RTt)a1), ..., N((R]t)a,))
where T(x,y,z) = (x/z,y/z).

Three regimes:
» Underconstrained, dim() > dim(7(X)) = m: eg. P1P / P2P
» Overconstrained, dim(7(Y)) < m: eg. P4P, P5P, ...
» Minimal / well-constrained, dim(X) = dim(7 (X)) = m: eg. P3P



Underconstrained regime: infinitely-many (complex) solutions, so exact recovery of
(R|t) is hopeless. Still, there may be some constraints worth studying.

Exercise: For two generic 3D-2D point matches, (q1, p1), (92, p2), viewed by some
calibrated camera A = (R|[t), show that the camera center [ker A] € P, where

_RT
kerA:span{[ Ii t]}

must lie on a quartic surface with two singular points at the q;, and the equation of
this surface is independent of the camera orientation R.



Overconstrained regime: again, exact recovery is hopeless. One must
choose some objective to minimize, eg. the reprojection error,

- pilll A[La)\? |, (P2 A[2]q)
A 2 <p,j[3] A[3r:]qj> +<Pj[3] A[3¢1]qj> 1)

1<<n

r

Local optimization requires an initial guess. Minimal solvers help here!



https://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2024-04030-9/S0025-5718-2024-04030-9.pdf

Overconstrained regime: again, exact recovery is hopeless. One must
choose some objective to minimize, eg. the reprojection error,

- pilll A[La)\? |, (P2 A[2]q)
A 2 <p,j[3] A[3r:]qj> +<Pj[3] A[3¢1]qj> 1)

1<<n

M
Local optimization requires an initial guess. Minimal solvers help here!

Global optimization is oftentimes impractical...

Conjecture (Connelly-D- Loucks-Tavitas, Math. Comp. '24)

For uncalibrated cameras with n > 6 measurements, the number of
complex-valued regular critical points of (1) equals

(80/3)n® — 368n% + (5068,/3)n — 2580.

(Open) How many critical points if A is constrained to be calibrated?


https://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2024-04030-9/S0025-5718-2024-04030-9.pdf

Minimal regime (P3P cont.) w o ‘l ----- e
Given a solution (A1, A2, A\3) <> J o
to Grunert's equations, T e

AP+ A2 -2 (Piij> AN =(a—a) (g —q), 1<i<j<3, qeR?
we can recover the calibrated camera (R | t) € SE3 as follows:

R=PQ ', where

P = (A1p1 — A2p2 | A1p1 — A3p3 | (A1p1 — Aop2) X (A1p1 — A3p3))
Q = (a1 — 92|91 — a3 | (g1 — 92) x (41 — q3)), and
t=X\p;—Rq; (any1i.)

Minimal solvers (eg. Ding et al., CVPR '23) can run in less than a microsecond!


https://openaccess.thecvf.com/content/CVPR2023/papers/Ding_Revisiting_the_P3P_Problem_CVPR_2023_paper.pdf
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PnP assumes 3D-2D matches.
Is that reasonable?

Random Sampling and
Consensus, aka RANSAC, is used
in computer vision for
outlier-robust model-fitting.

Over N trials:

1. Sample k out of n 3D-2D
matches, uniformly at random
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(known 3D) vs query image (only 2D)

PnP assumes 3D-2D matches.
Is that reasonable?

Random Sampling and
Consensus, aka RANSAC, is used
in computer vision for
outlier-robust model-fitting.

Over N trials:
1. Sample k out of n 3D-2D
matches, uniformly at random
2. (Somehow) solve PkP
3. Measure consensus of
solutions on remaining

samples, and keep the
maximum-consensus solution
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RanSaC, analyzed
Assume we have the following:
1. N, the number of trials,
2. a PkP solver,
3. a consensus criterion (depends on some threshold),
4

. a confidence s € (0,1), the desired probability of obtaining an outlier-free sample
of k matches after N trials.

Let p € (0,1) denote the fraction of erroneous matches, so that the probability of
drawing an all-inlier sample in one trial is

(%)

P= - (2)
(k)
From our specification above, we should have
log(1 —
1-PN<1-s = N> lel=s) (3)

~ log(1—P)



Minimal Solvers Maximize Sample Efficiency!
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Figure: RanSaC trials N needed to find an outlier-free subsample of size k with confidence
s = .95 from n € [10,100] total matches, and with p = .5 outlier probability.



Back to the P3P

M2 402 -2 (p1sz> A2 = (g1 — q2) " (a1 — q2),

M2+ 232 -2 (Pl TP3) Az = (91— q3) " (a1 — q3),

A2 4 232 =2 (psz3> AoAs = (a2 — q3) " (a2 — q3). (4)
Three quadrics in three unknowns generally have 23 = 8 solutions.
This is indeed the case for the system above.

P3P is an easy minimal problem—in fact, it is even easier than solving 3 quadrics in 3
unknowns, because of a 7Z/27-symmetry.



Back to the P3P

M2 402 -2 (p1sz> A2 = (g1 — q2) " (a1 — q2),

M2+ 232 -2 (Pl TP3) Az = (91— q3) " (a1 — q3),

A2 4 232 =2 (psz3> AoAs = (a2 — q3) " (a2 — q3). (4)
Three quadrics in three unknowns generally have 23 = 8 solutions.
This is indeed the case for the system above.

P3P is an easy minimal problem—in fact, it is even easier than solving 3 quadrics in 3
unknowns, because of a 7Z/27-symmetry.

(A1, A2, A3) solves (4) & (—A1, — A2, —A3) solves (4)



Decomposing P3P
Consider the rational Z/27-invariants

(p1, 02, p3) = (M\1/A3, A2/ A3, A3?),

and set, for 1 <j < j <3

cj=—2p;"p;, dj=(a;—a)" (ai—q).
Our system:

M2+ 2% -2 <p1 sz) T(a1 — a2),
M2+ 232 -2 <P1 TP3> AAs = (g1 — q3) " (a1 — q3),

A2 + 232 =2 (Pz "ps

Atdo = (q1 — q2)

Mz = (92 — q3) " (92 — q3).



Decomposing P3P

Consider the rational Z/2Z-invariants

and set for 1 <j < j <3,

Our system:

(p1, 02, p3) = (\1/A3, A2/ A3, A32),

A2 4 X2 + cio\i )\ = dio,
M2+ A2+ cishiAs = dis,
o2 4+ A32 + 3o A3 = dhs.
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Decomposing P3P

Consider the rational Z/27-invariants

(p1, 02, P3) = (M1/A3, X2/ A3, A32),

and set for 1 < j < j <3

cj=—2p;"pj, dj=(a;—a;) (ai —q)).

Our system:

{p12 + p2® — 2c12p1p2 = di2p3,
— linear in p3
diz (P12 + p22 + ciopipn) = dio (L+ p12 4+ cizpr)
doz (p12 + p2® + crop1p2) = diz (14 p2® + c23p2)

— intersection of two plane conics!
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A2 = p2As,
A3? = ps.



Decomposing P3P — Summary

Instead of solving a degree-8 problem, we can:

1. First, solve a degree-4 problem,

p12 + pa? — 2ciop1p2 = daps,
2 2 _ 2
diz (p1% + p2® + crzp1p2) = dio (L + p1° + cuzp1)
dhs (p12 + po? + cropip2) = dio (1 + po® + cozpo) -

2. Then, recover depths by solving a degree-2 problem,

A1 = p1A3,
A2 = P23,
A3? = ps.

3. Finally, recover (R |t) from depths by solving a degree-1 problem.



Some natural next questions:
» Do other minimal problems have such decompositions?
» If yes, how to find / analyze them?
» Do problems have optimal decompositions?

All of these questions can be addressed by computing the problem’s Galois group.



Galois Groups

Let 7 : X --» Z be a minimal problem—yby this, | mean a rational, dominant map
between irreducible complex algebraic varieties of the same dimension.

Let C(X) and C(Z) denote the fields of rational functions on X and Z, respectively.

The algebraic extension C(X)/C(Z) is finite of degree d > 0, which equals the generic
fiber size or degree of 7 (ie. deg(7) =d.)

Let C(X) denote a normal closure of the extension C(X)/C(Z).

Definition: Gal(r) = Gal ((C(X) /C(Z)) is the Galois group of 7.



Galois Groups

Let 7 : X --» Z be a minimal problem—yby this, | mean a rational, dominant map
between irreducible complex algebraic varieties of the same dimension.

Let C(X) and C(Z) denote the fields of rational functions on X and Z, respectively.

The algebraic extension C(X)/C(Z) is finite of degree d > 0, which equals the generic
fiber size or degree of 7 (ie. deg(7) =d.)

Let C(X) denote a normal closure of the extension C(X)/C(Z).
Definition: Gal(r) = Gal ((C(X) /C(Z)) is the Galois group of 7.

If you don't like this definition, you can instead think about monodromy.



Monodromy Groups

Let 7 : X --» Z be a minimal problem of degree d.
There exists a dense, Zariski open U C Z over which the restricted map
W’ﬂ,l(u) s Y (U) = U

is a d-sheeted covering of complex manifolds.

For any p € U, the monodromy group Mon(7, U; p) acts on the fiber 7=1(p).



Monodromy Groups

Let 7 : X --» Z be a minimal problem of degree d.
There exists a dense, Zariski open U C Z over which the restricted map

N U) = U

e
is a d-sheeted covering of complex manifolds.
For any p € U, the monodromy group Mon(7, U; p) acts on the fiber 7=1(p).

Example: Recall that P3P is a minimal problem of degree 8.

Let us describe the monodromy action...



Consider a 1-parameter family of systems

A2+ X2 + ca(t) A2 — dio(t)
H()\; t) = )\12 + )\32 + C13(t)/\1/\3 — d13(f)
M2+ A32 + co3(t) Ao Az — dos(t)
where p = (612(0), Ceey d23(0)) = (612(1), ceey d23(1)) eVvUcC C3 x C3.

Suppose we have a solution \o € C* at t = 0, ie. H()\;0) = 0.
The implicit function theorem constructs a local solution function,

‘(0H L
AE) = o —/0 <a)\()\(s),5)) 2 Os)is) o5
In general, \(0) # \(1)—because more than one solution exists!

The monodromy group Mon(7, U; p) consists of all permutations on the solution set
7~1(p) that send A\(0) to A(1) for each local solution function .



P3P monodromy

If \(t) is a local solution function, so is \'(t) = —A(t). Since
Mt) =N (t) Vtelo,1],

the monodromy group is not the full-symmetric group Ss. Any monodromy
permutation must preserve a nontrivial partition of the solution set

W_l(p) = {)\1, *)\1} L {)\2, *)\2} L {)\3, *)\3} L {)\4, *)\4}.
The group of all such permutations is the wreath product 5> 5;4. Thus,
Mon(m, U; p) C S21 5

Surprisingly, this containment is strict!



Calibrated Resectioning with p Points and / Lines

st (P3) P 5 (Gr(PY,P3)) ! x SE3 --» (P2 x P2) P x (Gr(P!, P3) x )
(q17"-)qi7 Elu"'éh (R t)) = (ql'u (R t)qf) 1 < i < 3; [_lu /\2 (R t)gja

We get a branched cover when p+ [ = 3.

Previously (D., Korotynskiy, Pajdla, Regan, SIAM J. Appl. Alg. Geom., 2023),
we numerically computed the following table of Galois/monodromy groups:

Problem | p /| deg(m,;)  Gal(mp,) Deck(mp,/)
P3P 3 0 8 S21S4NAg Sz
POPIL |2 1 4 S21S; S,
P1P2L |1 2 8 S21S4NAg Y
P3L 0 3 8 Ss trivial



https://epubs.siam.org/doi/10.1137/21M1422872

Resectioning with Points and Lines (cont.)

. Method Avg.  Min Max
Prior work (Kukelova et al., CVPR '16), PoPIL Oure 314 231 3061

(Ramalingam et al., ICRA '11) proposed PoP1L Kuk. 1861 1439 10102

degree-4 / degree-8 solvers for P2P1L / PoP1L Ram. 8898 5805 49984
P1P2L. Although we do not theoretically P1PoL Ours. 504 364 4554

provg that our solutlons.are of the lowest P1PoL Kuk. 1967 1484 12931
possible degrees, we believe...

i ] 1 . ! Table: Solver timings in nanoseconds
B \ ‘ e

' ‘ * Method Avg. Ro,  Avg. t,

P2P1L Ours 5.3e-12  3.7e-10

P2P1L Kuk. 2.8e-05  2.0e-05

Can the theoretical improvements P2P1L Ram. 4.7e-07  2.3e-05
suggested by Galois groups also be made PP1P2L Ours 1.2e-07  2.0e-06
practical? Yes—(D. Hruby, Pollefeys, P1P2L Kuk. 3.3e-05  3.4e-05

CVPR 2024, arXiv 2404.16552).

Table: Average solver errors (R, in radians.)


https://openaccess.thecvf.com/content_cvpr_2016/papers/Kukelova_Efficient_Intersection_of_CVPR_2016_paper.pdf
https://ieeexplore.ieee.org/document/5979781
https://arxiv.org/pdf/2404.16552
https://arxiv.org/pdf/2404.16552

A non-toy problem
A radial camera is a surjective projective linear map A : P3 -5 PL.

Intuition: The usual pinhole
camera P2 —-» P2 does not
account for lens distortions.
Usually, the distortion is
radially-symmetric.

However, the space of radial lines
through the image center forms a
P!, and each radial line is
invariant under distortion.

Goal: recover unknown 3D scene
and cameras from matched 1D
projections.




To obtain a metrically accurate reconstruction, we need 4 radial cameras

A1, ..., Ay € P(R?*%), and to assume they are calibrated, which means
l’,g i T
A,’ = T ’ where ||r,-1H = HI’,’QH = 1, Fip¥rio = 0.
rio ti2

Up to similarity transformation in R3, we may assume

[t o000 _[rf o
Al_{o 10 o} A2_[r§2 1]'

This leaves 0 + 3 + 5+ 5 = 13 unknowns, and a minimal problem: given matches
Pi1, Pi2, Pi3, Pia € P, find q1,...,q13 € P2 and A; as above such that

Aigi~p; V1<i<4,1<;7<13.
The number of complex solutions is 3584.

Can we do better?



We can do better!

(Hruby, Korotynskiy, D., et. al, CVPR ’23) reconstructs radial cameras by
decomposing into subproblems of degree at most 28.

The number 28 is the Galois width of a
finite group / branched cover naturally
associated to this reconstruction problem.

| will explain what this means.
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1. Initialize [Fy < Q
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Galois width
Here is a simple model for an exact, algebraic algorithm:

1. Initialize [Fy < Q
2. Fori=1,..., m, either
(i) do arithmetic in F; + F,_;, OR
(i) compute a root of a polynomial: formally, extend the working field F; <— F;_1()

3. Output: a € IF,,

Definition B
An algorithm computing an algebraic number o € Q is a finite tower of fields

Q=FclF,c---CcF,>3a.

Definition
The Galois width of an algebraic number o € Q is the quantity
) = i F,‘ . F,‘ .
gW(”) alggl)iltrl::ms Orgnia<xm [ + ])

Q=FoC---CFm>3a



Definition B
The Galois width of an algebraic number oo € Q is the quantity

gw(a)= min ( max [Fiy; : JF,-]) :

algorithms 0<i<m
@:TOC”'CF/WBO

There is a parallel notion in the world of finite groups.

Definition
The Galois width of a finite group G is the quantity

gw(G) = min ( max [H; : H,-+1]> :

subgroup chains 0<i<m
id=Hm<...<Hy=G

Theorem (D 25)

For any algebraic number o € ) with minimal polynomial p(x) € Q[x] and Galois
group G = Gal(p(x)), we have gw(a) = gw(G).



Theorem (Properties of the Galois width (D '25))
Let G be any finite group.

1.
2.
3.

gw(H) < gw(G) for any subgroup H < G.
gw(G) = max (gw(N), gw(G/N)) for any normal subgroup N < G.

For any composition series id = N,, <Ny, 1 <--- < Ny = G, we have

gw(G) = [max gw (Ni/Nit1)-

If G is simple, then
gw(G) = min [G : H].
H<G

For any prime p, we have gw(Z/pZ) = p.

3 ifn=4
For any n > 1, we have gw(5,) = gw(A,) = { i ’
n else.



