
Numerically Computing
Galois Groups of Minimal Problems

Tim Duff
University of Missouri - Columbia
ISSAC 2025, July 28
CIMAT, Guanajuato Mexico

Overview

The goal of this talk is to explain an unlikely intersection of three subjects:

1. Computer vision (mainly, minimal problems)

2. Galois theory for polynomial systems

3. Numerical continuation methods methods for solving these systems.

I’ll also spend a large amount of time motivating the study of minimal problems.

For further reading and references: see the short article accompanying this tutorial
(https://arxiv.org/abs/2507.10407, to appear in ISSAC 2025 Proceedings.)

arXiv:2507.10407

R3 99K R2x
y
z

 7→ (
x/z
y/z

)

Classical computer vision begins with the pinhole camera in standard
coordinates, projecting a 3D point onto the plane z = 1.

Not linear, but projective linear. Represented by a 3× 4 camera matrix

x/z
y/z
1

 ∼
x
y
z

 =

1 0 0 0
0 1 0 0
0 0 1 0



x
y
z
1


(Recall: n-dimensional projective space over the real numbers,

Pn =
(
Rn+1 \ {0}

)
/ (x ∼ λx ∀λ ∈ R \ {0}) .

Points in Rn have homogeneous coordinates in Pn.
If x, y ∈ Rn+1 represent the same point in Pn, we write x ∼ y.)

Anatomy of the pinhole camera

In general, we need coordinate systems for the camera (A ∈ P
(
Hom(R4,R3)

) ∼= P11),
the world points (q ∈ P3), and the image points (p ∈ P2).

A generic linear projection A : P3 99K P2 has 11 degrees of freedom.
Their physical meaning can be seen from RQ decomposition,

A ∼

αx s x0
0 αy y0
0 0 1

 · (R t
)
,

where R ∈ SO3 is a 3× 3 rotation matrix, t a translation vector.

The camera matrix
(
R | t

)
is said to be calibrated. It describes the position and

orientation of the camera in space.

Intrinsic parameters αx , s, x0, αy , y0 determine the camera’s pixel width, image center,
aspect ratio, skew, and focal length. They are often (not always!) known in practice.

Classical camera geometry problems

Lagrange (1773) Grunert (1841)
P3P (Resectioning) P3P (Resectioning)

Hesse (1863) Kruppa (1913)
7-point method (Reconstruction) 5-point method (Reconstruction)

Perspective 3-Point Problem (aka P3P, Calibrated Resectioning, ...)
Given: 3D points q1,q2,q3 ∈ P3 and matching 2D points p1,p2,p3 ∈ P2

Unknown: calibrated camera (R t) such that pi ∼ (R t)qi for i = 1, 2, 3.

Choose projective representatives such that qi =
(
qi1 qi2 qi3 1

)T
, and pi

Tpi = 1.
Define (unknown) scalar depths λ1, λ2, λ3 such that λipi = (R t)qi .


0
0
0
1


λ1 p1=(R t)q1

λ3 p3=(R t)q3

λ2 p2=(R t)q2

Grunert (1847) derived 3 polynomial equations in 3 unknowns: for 1 ≤ i < j ≤ 3,

λi
2 + λj

2 − 2
(
pi

Tpj
)
λiλj = (qi − qj)

T (qi − qj).

For generic data (q1,q2,q3,p1,p2,p3), this system has 8 (complex-valued) solutions.

Perspective 3-Point Problem (aka P3P, Calibrated Resectioning, ...)
Given: 3D points q1,q2,q3 ∈ P3 and matching 2D points p1,p2,p3 ∈ P2

Unknown: calibrated camera (R t) such that pi ∼ (R t)qi for i = 1, 2, 3.

Choose projective representatives such that qi =
(
qi1 qi2 qi3 1

)T
, and pi

Tpi = 1.
Define (unknown) scalar depths λ1, λ2, λ3 such that λipi = (R t)qi .


0
0
0
1


λ1 p1=(R t)q1

λ3 p3=(R t)q3

λ2 p2=(R t)q2

Grunert (1847) derived 3 polynomial equations in 3 unknowns: for 1 ≤ i < j ≤ 3,

λi
2 + λj

2 − 2
(
pi

Tpj
)
λiλj = (qi − qj)

T (qi − qj).

For generic data (q1,q2,q3,p1,p2,p3), this system has 8 (complex-valued) solutions.

Universal problem of algebraic vision: Let π : X 99K Rm be a map of algebraic
varieties, where X is a space of unknown states and π(X) ⊂ Rm is a space of idealized
data. Given a measurement ỹ ≈ y of “true” data y = π(x), recover x̃ ∈ X with x̃ ≈ x.

Example 1: Perspective n-point (PnP / calibrated resectioning)

πPnP : SE3 →
(
R2

)n
(R | t) 7→ (Π ((R | t)q1) , . . . , Π ((R | t)qn))

where Π(x , y , z) = (x/z , y/z).

Three regimes:

▶ Underconstrained, dim(X) > dim(π(X)) = m: eg. P1P / P2P

▶ Overconstrained, dim(π(X)) < m: eg. P4P, P5P, . . .

▶ Minimal / well-constrained, dim(X) = dim(π(X)) = m: eg. P3P

Universal problem of algebraic vision: Let π : X 99K Rm be a map of algebraic
varieties, where X is a space of unknown states and π(X) ⊂ Rm is a space of idealized
data. Given a measurement ỹ ≈ y of “true” data y = π(x), recover x̃ ∈ X with x̃ ≈ x.

Example 1: Perspective n-point (PnP / calibrated resectioning)

πPnP : SE3 →
(
R2

)n
(R | t) 7→ (Π ((R | t)q1) , . . . , Π ((R | t)qn))

where Π(x , y , z) = (x/z , y/z).

Three regimes:

▶ Underconstrained, dim(X) > dim(π(X)) = m: eg. P1P / P2P

▶ Overconstrained, dim(π(X)) < m: eg. P4P, P5P, . . .

▶ Minimal / well-constrained, dim(X) = dim(π(X)) = m: eg. P3P

Universal problem of algebraic vision: Let π : X 99K Rm be a map of algebraic
varieties, where X is a space of unknown states and π(X) ⊂ Rm is a space of idealized
data. Given a measurement ỹ ≈ y of “true” data y = π(x), recover x̃ ∈ X with x̃ ≈ x.

Example 1: Perspective n-point (PnP / calibrated resectioning)

πPnP : SE3 →
(
R2

)n
(R | t) 7→ (Π ((R | t)q1) , . . . , Π ((R | t)qn))

where Π(x , y , z) = (x/z , y/z).

Three regimes:

▶ Underconstrained, dim(X) > dim(π(X)) = m: eg. P1P / P2P

▶ Overconstrained, dim(π(X)) < m: eg. P4P, P5P, . . .

▶ Minimal / well-constrained, dim(X) = dim(π(X)) = m: eg. P3P

Universal problem of algebraic vision: Let π : X 99K Rm be a map of algebraic
varieties, where X is a space of unknown states and π(X) ⊂ Rm is a space of idealized
data. Given a measurement ỹ ≈ y of “true” data y = π(x), recover x̃ ∈ X with x̃ ≈ x.

Example 1: Perspective n-point (PnP / calibrated resectioning)

πPnP : SE3 →
(
R2

)n
(R | t) 7→ (Π ((R | t)q1) , . . . , Π ((R | t)qn))

where Π(x , y , z) = (x/z , y/z).

Three regimes:

▶ Underconstrained, dim(X) > dim(π(X)) = m: eg. P1P / P2P

▶ Overconstrained, dim(π(X)) < m: eg. P4P, P5P, . . .

▶ Minimal / well-constrained, dim(X) = dim(π(X)) = m: eg. P3P

Universal problem of algebraic vision: Let π : X 99K Rm be a map of algebraic
varieties, where X is a space of unknown states and π(X) ⊂ Rm is a space of idealized
data. Given a measurement ỹ ≈ y of “true” data y = π(x), recover x̃ ∈ X with x̃ ≈ x.

Example 1: Perspective n-point (PnP / calibrated resectioning)

πPnP : SE3 →
(
R2

)n
(R | t) 7→ (Π ((R | t)q1) , . . . , Π ((R | t)qn))

where Π(x , y , z) = (x/z , y/z).

Three regimes:

▶ Underconstrained, dim(X) > dim(π(X)) = m: eg. P1P / P2P

▶ Overconstrained, dim(π(X)) < m: eg. P4P, P5P, . . .

▶ Minimal / well-constrained, dim(X) = dim(π(X)) = m: eg. P3P

Universal problem of algebraic vision: Let π : X 99K Rm be a map of algebraic
varieties, where X is a space of unknown states and π(X) ⊂ Rm is a space of idealized
data. Given a measurement ỹ ≈ y of “true” data y = π(x), recover x̃ ∈ X with x̃ ≈ x.

Example 1: Perspective n-point (PnP / calibrated resectioning)

πPnP : SE3 →
(
R2

)n
(R | t) 7→ (Π ((R | t)q1) , . . . , Π ((R | t)qn))

where Π(x , y , z) = (x/z , y/z).

Three regimes:

▶ Underconstrained, dim(X) > dim(π(X)) = m: eg. P1P / P2P

▶ Overconstrained, dim(π(X)) < m: eg. P4P, P5P, . . .

▶ Minimal / well-constrained, dim(X) = dim(π(X)) = m: eg. P3P

Underconstrained regime: infinitely-many (complex) solutions, so exact recovery of
(R | t) is hopeless. Still, there may be some constraints worth studying.

Exercise: For two generic 3D-2D point matches, (q1,p1), (q2,p2), viewed by some
calibrated camera A = (R | t), show that the camera center [kerA] ∈ P3, where

kerA = span

{[
−RT t

1

]}
must lie on a quartic surface with two singular points at the qi , and the equation of
this surface is independent of the camera orientation R.

rj

Overconstrained regime: again, exact recovery is hopeless. One must
choose some objective to minimize, eg. the reprojection error,

min
A

 ∑
1≤j≤n

(
pij [1]

pij [3]
−

A[1, :]qj
A[3, :]qj

)2

+

(
pij [2]

pj [3]
−

A[2, :]qj
A[3, :]qj

)2

︸ ︷︷ ︸
rj

 (1)

Local optimization requires an initial guess. Minimal solvers help here!

Global optimization is oftentimes impractical...

Conjecture (Connelly-D- Loucks-Tavitas, Math. Comp. ’24)

For uncalibrated cameras with n ≥ 6 measurements, the number of
complex-valued regular critical points of (1) equals

(80/3)n3 − 368n2 + (5068/3)n − 2580.

(Open) How many critical points if A is constrained to be calibrated?

https://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2024-04030-9/S0025-5718-2024-04030-9.pdf

rj

Overconstrained regime: again, exact recovery is hopeless. One must
choose some objective to minimize, eg. the reprojection error,

min
A

 ∑
1≤j≤n

(
pij [1]

pij [3]
−

A[1, :]qj
A[3, :]qj

)2

+

(
pij [2]

pj [3]
−

A[2, :]qj
A[3, :]qj

)2

︸ ︷︷ ︸
rj

 (1)

Local optimization requires an initial guess. Minimal solvers help here!

Global optimization is oftentimes impractical...

Conjecture (Connelly-D- Loucks-Tavitas, Math. Comp. ’24)

For uncalibrated cameras with n ≥ 6 measurements, the number of
complex-valued regular critical points of (1) equals

(80/3)n3 − 368n2 + (5068/3)n − 2580.

(Open) How many critical points if A is constrained to be calibrated?

https://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2024-04030-9/S0025-5718-2024-04030-9.pdf

Minimal regime (P3P cont.)
Given a solution (λ1, λ2, λ3)
to Grunert’s equations,

0
0
0


λ1 p1=Rq1 + t

λ3 p3=Rq3 + t

λ2 p2=Rq2 + t

λi
2 + λj

2 − 2
(
pi

Tpj
)
λiλj = (qi − qj)

T (qi − qj), 1 ≤ i < j ≤ 3, qi ∈ R3,

we can recover the calibrated camera (R | t) ∈ SE3 as follows:

R = PQ−1, where

P = (λ1p1 − λ2p2 |λ1p1 − λ3p3 | (λ1p1 − λ2p2)× (λ1p1 − λ3p3))

Q = (q1 − q2 |q1 − q3 | (q1 − q2)× (q1 − q3)) , and

t = λipi − Rqi (any i .)

Minimal solvers (eg. Ding et al., CVPR ’23) can run in less than a microsecond!

https://openaccess.thecvf.com/content/CVPR2023/papers/Ding_Revisiting_the_P3P_Problem_CVPR_2023_paper.pdf

Why does anybody care?

retrieved image (known 3D) vs query image (only 2D)

PnP assumes 3D-2D matches.
Is that reasonable?

Random Sampling and
Consensus, aka RANSAC, is used
in computer vision for
outlier-robust model-fitting.

Over N trials:

1. Sample k out of n 3D-2D
matches, uniformly at random

2. (Somehow) solve PkP

3. Measure consensus of
solutions on remaining
samples, and keep the
maximum-consensus solution

Why does anybody care?

retrieved image (known 3D) vs query image (only 2D)

PnP assumes 3D-2D matches.
Is that reasonable?

Random Sampling and
Consensus, aka RANSAC, is used
in computer vision for
outlier-robust model-fitting.

Over N trials:

1. Sample k out of n 3D-2D
matches, uniformly at random

2. (Somehow) solve PkP

3. Measure consensus of
solutions on remaining
samples, and keep the
maximum-consensus solution

Why does anybody care?

retrieved image (known 3D) vs query image (only 2D)

PnP assumes 3D-2D matches.
Is that reasonable?

Random Sampling and
Consensus, aka RANSAC, is used
in computer vision for
outlier-robust model-fitting.

Over N trials:

1. Sample k out of n 3D-2D
matches, uniformly at random

2. (Somehow) solve PkP

3. Measure consensus of
solutions on remaining
samples, and keep the
maximum-consensus solution

Why does anybody care?

retrieved image (known 3D) vs query image (only 2D)

PnP assumes 3D-2D matches.
Is that reasonable?

Random Sampling and
Consensus, aka RANSAC, is used
in computer vision for
outlier-robust model-fitting.

Over N trials:

1. Sample k out of n 3D-2D
matches, uniformly at random

2. (Somehow) solve PkP

3. Measure consensus of
solutions on remaining
samples, and keep the
maximum-consensus solution

Why does anybody care?

retrieved image (known 3D) vs query image (only 2D)

PnP assumes 3D-2D matches.
Is that reasonable?

Random Sampling and
Consensus, aka RANSAC, is used
in computer vision for
outlier-robust model-fitting.

Over N trials:

1. Sample k out of n 3D-2D
matches, uniformly at random

2. (Somehow) solve PkP

3. Measure consensus of
solutions on remaining
samples, and keep the
maximum-consensus solution

Why does anybody care?

retrieved image (known 3D) vs query image (only 2D)

PnP assumes 3D-2D matches.
Is that reasonable?

Random Sampling and
Consensus, aka RANSAC, is used
in computer vision for
outlier-robust model-fitting.

Over N trials:

1. Sample k out of n 3D-2D
matches, uniformly at random

2. (Somehow) solve PkP

3. Measure consensus of
solutions on remaining
samples, and keep the
maximum-consensus solution

RanSaC, analyzed
Assume we have the following:

1. N, the number of trials,

2. a PkP solver,

3. a consensus criterion (depends on some threshold),

4. a confidence s ∈ (0, 1), the desired probability of obtaining an outlier-free sample
of k matches after N trials.

Let p ∈ (0, 1) denote the fraction of erroneous matches, so that the probability of
drawing an all-inlier sample in one trial is

P =

(pn
k

)(n
k

) . (2)

From our specification above, we should have

(1− P)N ≤ 1− s ⇒ N ≥ log(1− s)

log(1− P)
. (3)

RanSaC, analyzed
Assume we have the following:

1. N, the number of trials,

2. a PkP solver,

3. a consensus criterion (depends on some threshold),

4. a confidence s ∈ (0, 1), the desired probability of obtaining an outlier-free sample
of k matches after N trials.

Let p ∈ (0, 1) denote the fraction of erroneous matches, so that the probability of
drawing an all-inlier sample in one trial is

P =

(pn
k

)(n
k

) . (2)

From our specification above, we should have

(1− P)N ≤ 1− s ⇒ N ≥ log(1− s)

log(1− P)
. (3)

RanSaC, analyzed
Assume we have the following:

1. N, the number of trials,

2. a PkP solver,

3. a consensus criterion (depends on some threshold),

4. a confidence s ∈ (0, 1), the desired probability of obtaining an outlier-free sample
of k matches after N trials.

Let p ∈ (0, 1) denote the fraction of erroneous matches, so that the probability of
drawing an all-inlier sample in one trial is

P =

(pn
k

)(n
k

) . (2)

From our specification above, we should have

(1− P)N ≤ 1− s ⇒ N ≥ log(1− s)

log(1− P)
. (3)

RanSaC, analyzed
Assume we have the following:

1. N, the number of trials,

2. a PkP solver,

3. a consensus criterion (depends on some threshold),

4. a confidence s ∈ (0, 1), the desired probability of obtaining an outlier-free sample
of k matches after N trials.

Let p ∈ (0, 1) denote the fraction of erroneous matches, so that the probability of
drawing an all-inlier sample in one trial is

P =

(pn
k

)(n
k

) . (2)

From our specification above, we should have

(1− P)N ≤ 1− s ⇒ N ≥ log(1− s)

log(1− P)
. (3)

RanSaC, analyzed
Assume we have the following:

1. N, the number of trials,

2. a PkP solver,

3. a consensus criterion (depends on some threshold),

4. a confidence s ∈ (0, 1), the desired probability of obtaining an outlier-free sample
of k matches after N trials.

Let p ∈ (0, 1) denote the fraction of erroneous matches, so that the probability of
drawing an all-inlier sample in one trial is

P =

(pn
k

)(n
k

) . (2)

From our specification above, we should have

(1− P)N ≤ 1− s ⇒ N ≥ log(1− s)

log(1− P)
. (3)

RanSaC, analyzed
Assume we have the following:

1. N, the number of trials,

2. a PkP solver,

3. a consensus criterion (depends on some threshold),

4. a confidence s ∈ (0, 1), the desired probability of obtaining an outlier-free sample
of k matches after N trials.

Let p ∈ (0, 1) denote the fraction of erroneous matches, so that the probability of
drawing an all-inlier sample in one trial is

P =

(pn
k

)(n
k

) . (2)

From our specification above, we should have

(1− P)N ≤ 1− s ⇒ N ≥ log(1− s)

log(1− P)
. (3)

Minimal Solvers Maximize Sample Efficiency!

20 40 60 80 100

100

200

300

400

500

600

k=3

k=4

k=5

k=6

Figure: RanSaC trials N needed to find an outlier-free subsample of size k with confidence
s = .95 from n ∈ [10, 100] total matches, and with p = .5 outlier probability.

Back to the P3P

λ1
2 + λ2

2 − 2
(
p1

Tp2
)
λ1λ2 = (q1 − q2)

T (q1 − q2),

λ1
2 + λ3

2 − 2
(
p1

Tp3
)
λ1λ3 = (q1 − q3)

T (q1 − q3),

λ2
2 + λ3

2 − 2
(
p2

Tp3
)
λ2λ3 = (q2 − q3)

T (q2 − q3). (4)

Three quadrics in three unknowns generally have 23 = 8 solutions.

This is indeed the case for the system above.

P3P is an easy minimal problem—in fact, it is even easier than solving 3 quadrics in 3
unknowns, because of a Z/2Z-symmetry.

(λ1, λ2, λ3) solves (4) ⇔ (−λ1,−λ2,−λ3) solves (4)

Back to the P3P

λ1
2 + λ2

2 − 2
(
p1

Tp2
)
λ1λ2 = (q1 − q2)

T (q1 − q2),

λ1
2 + λ3

2 − 2
(
p1

Tp3
)
λ1λ3 = (q1 − q3)

T (q1 − q3),

λ2
2 + λ3

2 − 2
(
p2

Tp3
)
λ2λ3 = (q2 − q3)

T (q2 − q3). (4)

Three quadrics in three unknowns generally have 23 = 8 solutions.

This is indeed the case for the system above.

P3P is an easy minimal problem—in fact, it is even easier than solving 3 quadrics in 3
unknowns, because of a Z/2Z-symmetry.

(λ1, λ2, λ3) solves (4) ⇔ (−λ1,−λ2,−λ3) solves (4)

Decomposing P3P

Consider the rational Z/2Z-invariants

(ρ1, ρ2, ρ3) = (λ1/λ3, λ2/λ3, λ3
2),

and set, for 1 ≤ i < j ≤ 3,

cij = −2pi Tpj , dij = (qi − qj)
T (qi − qj).

Our system:

λ1
2 + λ2

2 − 2
(
p1

Tp2
)
λ1λ2 = (q1 − q2)

T (q1 − q2),

λ1
2 + λ3

2 − 2
(
p1

Tp3
)
λ1λ3 = (q1 − q3)

T (q1 − q3),

λ2
2 + λ3

2 − 2
(
p2

Tp3
)
λ2λ3 = (q2 − q3)

T (q2 − q3).

Decomposing P3P

Consider the rational Z/2Z-invariants

(ρ1, ρ2, ρ3) = (λ1/λ3, λ2/λ3, λ3
2),

and set for 1 ≤ i < j ≤ 3,

cij = −2pi Tpj , dij = (qi − qj)
T (qi − qj).

Our system:

λ1
2 + λ2

2 + c12λ1λ2 = d12,

λ1
2 + λ3

2 + c13λ1λ3 = d13,

λ2
2 + λ3

2 + c23λ2λ3 = d23.

Decomposing P3P

Consider the rational Z/2Z-invariants

(ρ1, ρ2, ρ3) = (λ1/λ3, λ2/λ3, λ3
2),

and set for 1 ≤ i < j ≤ 3,

cij = −2pi Tpj , dij = (qi − qj)
T (qi − qj).

Our system:

ρ1
2 + ρ2

2 + c12ρ1ρ2 = d12ρ3,

1 + ρ1
2 + c13ρ1 = d13ρ3,

1 + ρ2
2 + c23ρ2 = d23ρ3.

Decomposing P3P

Consider the rational Z/2Z-invariants

(ρ1, ρ2, ρ3) = (λ1/λ3, λ2/λ3, λ3
2),

and set for 1 ≤ i < j ≤ 3,

cij = −2pi Tpj , dij = (qi − qj)
T (qi − qj).

Our system:

ρ1
2 + ρ2

2 + c12ρ1ρ2 = d12ρ3,

d13
(
ρ1

2 + ρ2
2 + c12ρ1ρ2

)
= d12

(
1 + ρ1

2 + c13ρ1
)
,

d23
(
ρ1

2 + ρ2
2 + c12ρ1ρ2

)
= d12

(
1 + ρ2

2 + c23ρ2
)
.

Decomposing P3P
Consider the rational Z/2Z-invariants

(ρ1, ρ2, ρ3) = (λ1/λ3, λ2/λ3, λ3
2),

and set for 1 ≤ i < j ≤ 3,

cij = −2pi Tpj , dij = (qi − qj)
T (qi − qj).

Our system: {
ρ1

2 + ρ2
2 − 2c12ρ1ρ2 = d12ρ3,

→ linear in ρ3{
d13

(
ρ1

2 + ρ2
2 + c12ρ1ρ2

)
= d12

(
1 + ρ1

2 + c13ρ1
)
,

d23
(
ρ1

2 + ρ2
2 + c12ρ1ρ2

)
= d12

(
1 + ρ2

2 + c23ρ2
)

→ intersection of two plane conics!

Decomposing P3P — Summary

Instead of solving a degree-8 problem, we can:

1. First, solve a degree-4 problem,

ρ1
2 + ρ2

2 − 2c12ρ1ρ2 = d12ρ3,

d13
(
ρ1

2 + ρ2
2 + c12ρ1ρ2

)
= d12

(
1 + ρ1

2 + c13ρ1
)
,

d23
(
ρ1

2 + ρ2
2 + c12ρ1ρ2

)
= d12

(
1 + ρ2

2 + c23ρ2
)
.

2. Then, recover depths by solving a degree-2 problem,

λ1 = ρ1λ3,

λ2 = ρ2λ3,

λ3
2 = ρ3.

3. Finally, recover (R | t) from depths by solving a degree-1 problem.

Decomposing P3P — Summary
Instead of solving a degree-8 problem, we can:

1. First, solve a degree-4 problem,

ρ1
2 + ρ2

2 − 2c12ρ1ρ2 = d12ρ3,

d13
(
ρ1

2 + ρ2
2 + c12ρ1ρ2

)
= d12

(
1 + ρ1

2 + c13ρ1
)
,

d23
(
ρ1

2 + ρ2
2 + c12ρ1ρ2

)
= d12

(
1 + ρ2

2 + c23ρ2
)
.

2. Then, recover depths by solving a degree-2 problem,

λ1 = ρ1λ3,

λ2 = ρ2λ3,

λ3
2 = ρ3.

3. Finally, recover (R | t) from depths by solving a degree-1 problem.

Decomposing P3P — Summary
Instead of solving a degree-8 problem, we can:

1. First, solve a degree-4 problem,

ρ1
2 + ρ2

2 − 2c12ρ1ρ2 = d12ρ3,

d13
(
ρ1

2 + ρ2
2 + c12ρ1ρ2

)
= d12

(
1 + ρ1

2 + c13ρ1
)
,

d23
(
ρ1

2 + ρ2
2 + c12ρ1ρ2

)
= d12

(
1 + ρ2

2 + c23ρ2
)
.

2. Then, recover depths by solving a degree-2 problem,

λ1 = ρ1λ3,

λ2 = ρ2λ3,

λ3
2 = ρ3.

3. Finally, recover (R | t) from depths by solving a degree-1 problem.

Decomposing P3P — Summary
Instead of solving a degree-8 problem, we can:

1. First, solve a degree-4 problem,

ρ1
2 + ρ2

2 − 2c12ρ1ρ2 = d12ρ3,

d13
(
ρ1

2 + ρ2
2 + c12ρ1ρ2

)
= d12

(
1 + ρ1

2 + c13ρ1
)
,

d23
(
ρ1

2 + ρ2
2 + c12ρ1ρ2

)
= d12

(
1 + ρ2

2 + c23ρ2
)
.

2. Then, recover depths by solving a degree-2 problem,

λ1 = ρ1λ3,

λ2 = ρ2λ3,

λ3
2 = ρ3.

3. Finally, recover (R | t) from depths by solving a degree-1 problem.

Some natural next questions:

▶ Do other minimal problems have such decompositions?

▶ If yes, how to find / analyze them?

▶ Do problems have optimal decompositions?

All of these questions can be addressed by computing the problem’s Galois group.

Galois Groups

Let π : X 99K Z be a minimal problem—by this, I mean a rational, dominant map
between irreducible complex algebraic varieties of the same dimension.

Let C(X) and C(Z) denote the fields of rational functions on X and Z , respectively.

The algebraic extension C(X)/C(Z) is finite of degree d > 0, which equals the generic
fiber size or degree of π (ie. deg(π) = d .)

Let C(X) denote a normal closure of the extension C(X)/C(Z).

Definition: Gal(π) = Gal
(
C(X)/C(Z)

)
is the Galois group of π.

If you don’t like this definition, you can instead think about monodromy.

Galois Groups

Let π : X 99K Z be a minimal problem—by this, I mean a rational, dominant map
between irreducible complex algebraic varieties of the same dimension.

Let C(X) and C(Z) denote the fields of rational functions on X and Z , respectively.

The algebraic extension C(X)/C(Z) is finite of degree d > 0, which equals the generic
fiber size or degree of π (ie. deg(π) = d .)

Let C(X) denote a normal closure of the extension C(X)/C(Z).

Definition: Gal(π) = Gal
(
C(X)/C(Z)

)
is the Galois group of π.

If you don’t like this definition, you can instead think about monodromy.

Monodromy Groups

Let π : X 99K Z be a minimal problem of degree d .

There exists a dense, Zariski open U ⊂ Z over which the restricted map

π
∣∣
π−1(U)

: π−1(U)→ U

is a d-sheeted covering of complex manifolds.

For any p ∈ U, the monodromy group Mon(π,U; p) acts on the fiber π−1(p).

Example: Recall that P3P is a minimal problem of degree 8.

Let us describe the monodromy action...

Monodromy Groups

Let π : X 99K Z be a minimal problem of degree d .

There exists a dense, Zariski open U ⊂ Z over which the restricted map

π
∣∣
π−1(U)

: π−1(U)→ U

is a d-sheeted covering of complex manifolds.

For any p ∈ U, the monodromy group Mon(π,U; p) acts on the fiber π−1(p).

Example: Recall that P3P is a minimal problem of degree 8.

Let us describe the monodromy action...

Consider a 1-parameter family of systems

H(λ; t) =

λ1
2 + λ2

2 + c12(t)λ1λ2 − d12(t)
λ1

2 + λ3
2 + c13(t)λ1λ3 − d13(t)

λ2
2 + λ3

2 + c23(t)λ2λ3 − d23(t)

 .

where p = (c12(0), . . . , d23(0)) = (c12(1), . . . , d23(1)) ∈ U ⊂ C3 × C3.

Suppose we have a solution λ0 ∈ C3 at t = 0, ie. H(λ0; 0) = 0.
The implicit function theorem constructs a local solution function,

λ(t) = λ0 −
∫ t

0

(
∂H

∂λ
(λ(s); s)

)−1

· ∂H
∂t

(λ(s); s) ds

In general, λ(0) ̸= λ(1)—because more than one solution exists!

The monodromy group Mon(π,U; p) consists of all permutations on the solution set
π−1(p) that send λ(0) to λ(1) for each local solution function λ.

P3P monodromy

If λ(t) is a local solution function, so is λ′(t) = −λ(t). Since

λ(t) = −λ′(t) ∀t ∈ [0, 1],

the monodromy group is not the full-symmetric group S8. Any monodromy
permutation must preserve a nontrivial partition of the solution set

π−1(p) = {λ1,−λ1} ⊔ {λ2,−λ2} ⊔ {λ3,−λ3} ⊔ {λ4,−λ4}.

The group of all such permutations is the wreath product S2 ≀ S4. Thus,

Mon(π,U; p) ⊂ S2 ≀ S4

Surprisingly, this containment is strict!

Calibrated Resectioning with p Points and l Lines

πp,l :
(
P3

)×p ×
(
Gr(P1,P3)

)×l × SE3 99K
(
P3 × P2

)×p ×
(
Gr(P1,P3)× Gr(P1,P2)

)×l

(q1, . . . ,qi , ℓ1, . . . ℓl, (R t)) 7→
(
qi , (R t)qi , 1 ≤ i ≤ 3, ℓj, ∧2 (R t)ℓj , 1 ≤ j ≤ l

)
We get a branched cover when p + l = 3.
Previously (D., Korotynskiy, Pajdla, Regan, SIAM J. Appl. Alg. Geom., 2023),
we numerically computed the following table of Galois/monodromy groups:

Problem p l deg(πp,l) Gal(πp,l) Deck(πp,l)

P3P 3 0 8 S2 ≀ S4 ∩ A8 S2

P2P1L 2 1 4 S2 ≀ S2 S2

P1P2L 1 2 8 S2 ≀ S4 ∩ A8 S2

P3L 0 3 8 S8 trivial

https://epubs.siam.org/doi/10.1137/21M1422872

Resectioning with Points and Lines (cont.)

Prior work (Kukelova et al., CVPR ’16),
(Ramalingam et al., ICRA ’11) proposed
degree-4 / degree-8 solvers for P2P1L /
P1P2L. Although we do not theoretically
prove that our solutions are of the lowest
possible degrees, we believe...

Can the theoretical improvements
suggested by Galois groups also be made
practical? Yes—(D. Hruby, Pollefeys,
CVPR 2024, arXiv 2404.16552).

Method Avg. Min Max

P2P1L Ours 314 231 3061
P2P1L Kuk. 1861 1439 10102
P2P1L Ram. 8898 5805 49984

P1P2L Ours 504 364 4554
P1P2L Kuk. 1967 1484 12931

Table: Solver timings in nanoseconds

Method Avg. Rerr Avg. trel
P2P1L Ours 5.3e-12 3.7e-10
P2P1L Kuk. 2.8e-05 2.0e-05
P2P1L Ram. 4.7e-07 2.3e-05

PP1P2L Ours 1.2e-07 2.0e-06
P1P2L Kuk. 3.3e-05 3.4e-05

Table: Average solver errors (Rerr in radians.)

https://openaccess.thecvf.com/content_cvpr_2016/papers/Kukelova_Efficient_Intersection_of_CVPR_2016_paper.pdf
https://ieeexplore.ieee.org/document/5979781
https://arxiv.org/pdf/2404.16552
https://arxiv.org/pdf/2404.16552

A non-toy problem
A radial camera is a surjective projective linear map A : P3 99K P1.

Intuition: The usual pinhole
camera P3 99K P2 does not
account for lens distortions.
Usually, the distortion is
radially-symmetric.

However, the space of radial lines
through the image center forms a
P1, and each radial line is
invariant under distortion.

Goal: recover unknown 3D scene
and cameras from matched 1D
projections.

To obtain a metrically accurate reconstruction, we need 4 radial cameras
A1, . . . ,A4 ∈ P(R2×4), and to assume they are calibrated, which means

Ai =

[
rTi1 ti ,1
rTi2 ti ,2

]
where ∥ri1∥ = ∥ri2∥ = 1, rTi1 ri2 = 0.

Up to similarity transformation in R3, we may assume

A1 =

[
1 0 0 0
0 1 0 0

]
, A2 =

[
rT21 0
rT22 1

]
.

This leaves 0 + 3 + 5 + 5 = 13 unknowns, and a minimal problem: given matches
pi1,pi2,pi3,pi4 ∈ P1, find q1, . . . ,q13 ∈ P3 and Ai as above such that

Aiqj ∼ pij ∀ 1 ≤ i ≤ 4, 1 ≤ j ≤ 13.

The number of complex solutions is 3584.

Can we do better?

We can do better!
(Hruby, Korotynskiy, D., et. al, CVPR ’23) reconstructs radial cameras by
decomposing into subproblems of degree at most 28.

The number 28 is the Galois width of a
finite group / branched cover naturally
associated to this reconstruction problem.

I will explain what this means.

Galois width
Here is a simple model for an exact, algebraic algorithm:

1. Initialize F0 ← Q

2. For i = 1, . . . ,m, either
(i) do arithmetic in Fi ← Fi−1, OR
(ii) compute a root of a polynomial: formally, extend the working field Fi ← Fi−1(β)

3. Output: α ∈ Fm

Definition
An algorithm computing an algebraic number α ∈ Q is a finite tower of fields

Q = F0 ⊂ F1 ⊂ · · · ⊂ Fm ∋ α.

Definition
The Galois width of an algebraic number α ∈ Q is the quantity

gw(α) = min
algorithms

Q=F0⊂···⊂Fm∋α

(
max

0≤i<m
[Fi+1 : Fi]

)
.

Galois width
Here is a simple model for an exact, algebraic algorithm:

1. Initialize F0 ← Q
2. For i = 1, . . . ,m, either

(i) do arithmetic in Fi ← Fi−1, OR

(ii) compute a root of a polynomial: formally, extend the working field Fi ← Fi−1(β)

3. Output: α ∈ Fm

Definition
An algorithm computing an algebraic number α ∈ Q is a finite tower of fields

Q = F0 ⊂ F1 ⊂ · · · ⊂ Fm ∋ α.

Definition
The Galois width of an algebraic number α ∈ Q is the quantity

gw(α) = min
algorithms

Q=F0⊂···⊂Fm∋α

(
max

0≤i<m
[Fi+1 : Fi]

)
.

Galois width
Here is a simple model for an exact, algebraic algorithm:

1. Initialize F0 ← Q
2. For i = 1, . . . ,m, either

(i) do arithmetic in Fi ← Fi−1, OR
(ii) compute a root of a polynomial: formally, extend the working field Fi ← Fi−1(β)

3. Output: α ∈ Fm

Definition
An algorithm computing an algebraic number α ∈ Q is a finite tower of fields

Q = F0 ⊂ F1 ⊂ · · · ⊂ Fm ∋ α.

Definition
The Galois width of an algebraic number α ∈ Q is the quantity

gw(α) = min
algorithms

Q=F0⊂···⊂Fm∋α

(
max

0≤i<m
[Fi+1 : Fi]

)
.

Galois width
Here is a simple model for an exact, algebraic algorithm:

1. Initialize F0 ← Q
2. For i = 1, . . . ,m, either

(i) do arithmetic in Fi ← Fi−1, OR
(ii) compute a root of a polynomial: formally, extend the working field Fi ← Fi−1(β)

3. Output: α ∈ Fm

Definition
An algorithm computing an algebraic number α ∈ Q is a finite tower of fields

Q = F0 ⊂ F1 ⊂ · · · ⊂ Fm ∋ α.

Definition
The Galois width of an algebraic number α ∈ Q is the quantity

gw(α) = min
algorithms

Q=F0⊂···⊂Fm∋α

(
max

0≤i<m
[Fi+1 : Fi]

)
.

Galois width
Here is a simple model for an exact, algebraic algorithm:

1. Initialize F0 ← Q
2. For i = 1, . . . ,m, either

(i) do arithmetic in Fi ← Fi−1, OR
(ii) compute a root of a polynomial: formally, extend the working field Fi ← Fi−1(β)

3. Output: α ∈ Fm

Definition
An algorithm computing an algebraic number α ∈ Q is a finite tower of fields

Q = F0 ⊂ F1 ⊂ · · · ⊂ Fm ∋ α.

Definition
The Galois width of an algebraic number α ∈ Q is the quantity

gw(α) = min
algorithms

Q=F0⊂···⊂Fm∋α

(
max

0≤i<m
[Fi+1 : Fi]

)
.

Definition
The Galois width of an algebraic number α ∈ Q is the quantity

gw(α) = min
algorithms

Q=F0⊂···⊂Fm∋α

(
max

0≤i<m
[Fi+1 : Fi]

)
.

There is a parallel notion in the world of finite groups.

Definition
The Galois width of a finite group G is the quantity

gw(G) = min
subgroup chains

id=Hm≤...≤H0=G

(
max

0≤i<m
[Hi : Hi+1]

)
.

Theorem (D 25)

For any algebraic number α ∈ Q with minimal polynomial p(x) ∈ Q[x] and Galois
group G = Gal(p(x)), we have gw(α) = gw(G).

Theorem (Properties of the Galois width (D ’25))

Let G be any finite group.

1. gw(H) ≤ gw(G) for any subgroup H ≤ G .

2. gw(G) = max (gw(N), gw(G/N)) for any normal subgroup N ⊴ G .

3. For any composition series id = Nm ⊴ Nm−1 ⊴ · · ·⊴ N0 = G , we have

gw(G) = max
0≤i<m

gw (Ni/Ni+1) .

4. If G is simple, then
gw(G) = min

H<G
[G : H].

5. For any prime p, we have gw(Z/pZ) = p.

6. For any n ≥ 1, we have gw(Sn) = gw(An) =

{
3 if n = 4,

n else.
.

